Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Pharmacol Toxicol Methods ; 127: 107503, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574874

RESUMO

BACKGROUND: Omadacycline is the first aminomethyl-tetracycline variety to successfully enter clinical applications. To support regular therapeutic drug monitoring (TDM) in clinical practice, an ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method was developed that would allow omadacycline quantification in human serum. METHODS: Proteins were precipitated from serum samples using methanol. Tigecycline was used as the internal standard. Mobile phase A was formic acid in water (0.1% v/v) and mobile phase B was methanol. UPLC-MS/MS was performed for analyte separation using a gradient elution program at a flow rate of 0.3 mL/min and a total run time of 5 min. The chromatography column was a ZORBAX PRHD SB-Aq (3 × 50 mm, 1.8 µm, Agilent, USA). The multiple reaction monitoring transitions at m/z = 557.4/470.3 and 586.5/513.3 were selected for omadacycline and tigecycline in the positive mode, respectively. RESULTS: The validated curve ranges were 0.5-25.0 µg/mL. This method exhibited acceptable selectivity, matrix effects, and recovery. The inter- and intra-run accuracies ranged from 93.5% to 114.8%, and the inter- and intra-run precisions were between 1.29% and 5.55%. CONCLUSIONS: The LC-MS/MS method provided a simple, specific, and rapid quantification of omadacycline in the serum of patients with pulmonary infection.

2.
Neuroscience Bulletin ; (6): 503-518, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-971573

RESUMO

The concept of the glial-vascular unit (GVU) was raised recently to emphasize the close associations between brain cells and cerebral vessels, and their coordinated reactions to diverse neurological insults from a "glio-centric" view. GVU is a multicellular structure composed of glial cells, perivascular cells, and perivascular space. Each component is closely linked, collectively forming the GVU. The central roles of glial and perivascular cells and their multi-level interconnections in the GVU under normal conditions and in central nervous system (CNS) disorders have not been elucidated in detail. Here, we comprehensively review the intensive interactions between glial cells and perivascular cells in the niche of perivascular space, which take part in the modulation of cerebral blood flow and angiogenesis, formation of the blood-brain barrier, and clearance of neurotoxic wastes. Next, we discuss dysfunctions of the GVU in various neurological diseases, including ischemic stroke, spinal cord injury, Alzheimer's disease, and major depression disorder. In addition, we highlight the possible therapies targeting the GVU, which may have potential clinical applications.


Assuntos
Humanos , Neuroglia , Doenças do Sistema Nervoso , Barreira Hematoencefálica , Doença de Alzheimer , Sistema Glinfático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...